10 research outputs found

    Hierarchical classification of liver tumor from CT images based on difference-of-features (DOF)

    Get PDF
    This manuscript presents an automated classification approach to classifying lesions into four categories of liver diseases, based on Computer Tomography (CT) images. The four diseases types are Cyst, Hemangioma, Hepatocellular carcinoma (HCC), and Metastasis. The novelty of the proposed approach is attributed to utilising the difference of features (DOF) between the lesion area and the surrounding normal liver tissue. The DOF (texture and intensity) is used as the new feature vector that feeds the classifier. The classification system consists of two phases. The first phase differentiates between Benign and Malignant lesions, using a Support Vector Machine (SVM) classifier. The second phase further classifies the Benign into Hemangioma or Cyst and the Malignant into Metastasis or HCC, using a NaĆÆve Bayes (NB) classifier. The experimental results show promising improvements to classify the liver lesion diseases. Furthermore, the proposed approach can overcome the problems of varying intensity ranges, textures between patients, demographics, and imaging devices and settings

    Automated Characterisation and Classification of Liver Lesions From CT Scans

    Get PDF
    Cancer is a general term for a wide range of diseases that can affect any part of the body due to the rapid creation of abnormal cells that grow outside their normal boundaries. Liver cancer is one of the common diseases that cause the death of more than 600,000 each year. Early detection is important to diagnose and reduce the incidence of death. Examination of liver lesions is performed with various medical imaging modalities such as Ultrasound (US), Computer tomography (CT), and Magnetic resonance imaging (MRI). The improvements in medical imaging and image processing techniques have significantly enhanced the interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate. Moreover, CAD systems can help physician, as a second opinion, in characterising lesions and making the diagnostic decision. Thus, CAD systems have become an important research area. Particularly, these systems can provide diagnostic assistance to doctors to improve overall diagnostic accuracy. The traditional methods to characterise liver lesions and differentiate normal liver tissues from abnormal ones are largely dependent on the radiologists experience. Thus, CAD systems based on the image processing and artificial intelligence techniques gained a lot of attention, since they could provide constructive diagnosis suggestions to clinicians for decision making. The liver lesions are characterised through two ways: (1) Using a content-based image retrieval (CBIR) approach to assist the radiologist in liver lesions characterisation. (2) Calculating the high-level features that describe/ characterise the liver lesion in a way that is interpreted by humans, particularly Radiologists/Clinicians, based on the hand-crafted/engineered computational features (low-level features) and learning process. However, the research gap is related to the high-level understanding and interpretation of the medical image contents from the low-level pixel analysis, based on mathematical processing and artificial intelligence methods. In our work, the research gap is bridged if a relation of image contents to medical meaning in analogy to radiologist understanding is established. This thesis explores an automated system for the classification and characterisation of liver lesions in CT scans. Firstly, the liver is segmented automatically by using anatomic medical knowledge, histogram-based adaptive threshold and morphological operations. The lesions and vessels are then extracted from the segmented liver by applying AFCM and Gaussian mixture model through a region growing process respectively. Secondly, the proposed framework categorises the high-level features into two groups; the first group is the high-level features that are extracted from the image contents such as (Lesion location, Lesion focality, Calcified, Scar, ...); the second group is the high-level features that are inferred from the low-level features through machine learning process to characterise the lesion such as (Lesion density, Lesion rim, Lesion composition, Lesion shape,...). The novel Multiple ROIs selection approach is proposed, in which regions are derived from generating abnormality level map based on intensity difference and the proximity distance for each voxel with respect to the normal liver tissue. Then, the association between low-level, high-level features and the appropriate ROI are derived by assigning the ability of each ROI to represents a set of lesion characteristics. Finally, a novel feature vector is built, based on high-level features, and fed into SVM for lesion classification. In contrast with most existing research, which uses low-level features only, the use of high-level features and characterisation helps in interpreting and explaining the diagnostic decision. The methods are evaluated on a dataset containing 174 CT scans. The experimental results demonstrated that the efficacy of the proposed framework in the successful characterisation and classification of the liver lesions in CT scans. The achieved average accuracy was 95:56% for liver lesion characterisation. While the lesionā€™s classification accuracy was 97:1% for the entire dataset. The proposed framework is developed to provide a more robust and efficient lesion characterisation framework through comprehensions of the low-level features to generate semantic features. The use of high-level features (characterisation) helps in better interpretation of CT liver images. In addition, the difference-of-features using multiple ROIs were developed for robust capturing of lesion characteristics in a reliable way. This is in contrast to the current research trend of extracting the features from the lesion only and not paying much attention to the relation between lesion and surrounding area. The design of the liver lesion characterisation framework is based on the prior knowledge of the medical background to get a better and clear understanding of the liver lesion characteristics in medical CT images

    Computer-aided classification of liver lesions using contrasting features difference

    Get PDF
    Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate. This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesionā€™s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings

    Environmental Assessment of a Diesel Engine Fueled with Various Biodiesel Blends: Polynomial Regression and Grey Wolf Optimization

    No full text
    A series of tests were carried out to assess the environmental effects of biodiesel blends made of different vegetable oil, such as corn, sunflower, and palm, on exhaust and noise diesel engine emissions. Biodiesel blends with 20% vegetable oil biodiesel and 80% diesel fuel by volume were developed. The tests were conducted in a stationary diesel engine test bed consisting of a single-cylinder, four-stroke, and direct injection engine at variable engine speed. A prediction framework in terms of polynomial regression (PR) was first adopted to determine the correlation between the independent variables (engine speed, fuel type) and the dependent variables (exhaust emissions, noise level, and brake thermal efficiency). After that, a regression model was optimized by the grey wolf optimization (GWO) algorithm to update the current positions of the population in the discrete searching space, resulting in the optimal engine speed and fuel type for lower exhaust and noise emissions and maximizing engine performance. The following conclusions were drawn from the experimental and optimization results: in general, the emissions of unburned hydrocarbon (UHC), carbon dioxide (CO2), and carbon monoxide (CO) from all the different types of biodiesel blends were lower than those of diesel fuel. In contrast, the concentration of nitrogen oxides (NOx) emitted by all the types of biodiesel blends increased. The noise level produced by all the forms of biodiesel, especially palm biodiesel fuel, was lowered when compared to pure diesel. All the tested fuels had a high noise level in the middle frequency band, at 75% engine load, and high engine speeds. On average, the proposed PR-GWO model exhibited remarkable predictive reliability, with a high square of correlation coefficient (R2) of 0.9823 and a low root mean square error (RMSE) of 0.0177. Finally, the proposed model achieved superior outcomes, which may be utilized to predict and maximize engine performance and minimize exhaust and noise emissions

    Exhaust emission reduction of a SI engine using acetoneā€“gasoline fuel blends: Modeling, prediction, and whale optimization algorithm

    No full text
    Acetoneā€“gasoline fuel is one potential favorable alternative option to regular gasoline fuel. This work attempts to mitigate pollution while simultaneously improving SI engine performance with acetone (AC) proportion in fuel mixture and varying engine speed. Acetoneā€“gasoline alternative fuel was experimentally prepared by mixing 5ā€“10 vol.% of acetone into ordinary gasoline. The experiments were performed in a spark ignition (SI) single-cylinder, four-stroke at variable engine speed. The engine performance was measured by an eddy current dynamometer (ECD), while the exhaust engine was measured by a gas analyzer connected to the gasoline engine. The proposed strategy, the integrated combined polynomial regression with whale optimization algorithm (WOA), was implemented. The results showed that the acetone blending of 10 % with gasoline (AC10: 10 vol. % acetone + 90 vol. % gasoline) decreases carbon monoxide (CO), unburned hydrocarbon (UHC), and nitrogen oxides (NOx), emissions by 26.3%, 30.3%, and 6.6%, respectively. Furthermore, the AC10 exhibited better engine brake power (BP) than pure gasoline, with an improvement of 4.39%. According to the optimization results, the BP was enhanced by AC10 to record 2.426 kW at 2887 rpm. In addition, engine emissions reduced to the lowest levels of 142.849Ā ppm, 0.426%, and 1088.178Ā ppm, in terms of UHC, CO, and NOx, respectively. The experiment results show that the WOA optimizer can accurately predict the optimal point in SI engine performance and emissions

    A robust deep learning approach for glasses detection in nonā€standard facial images

    No full text
    Abstract Automated glasses detection is a cardinal component in facial/ocular analysis that powers forensic, surveillance and biometric authentication systems. Throughout literature, glasses detection was always experimented by either utilizing handā€crafted or deep learning features. Nevertheless, in both cases, highly standard face/ocular images were needed to derive the suggested technique. Both working methods performed reasonably well, but the results were bonded to the quality of the facial image and extracted features, where a slight shift and/or rotation in the input face image negatively affects the results. In addition, the obtained performance is even worse on realā€world (nonā€standard) images, especially when compared to recent achievements in other computer vision research areas. In this paper, we present a robust deep learning approach for glasses detection from selfie photos full/partial frontal body nonā€standard images captured in realā€life uncontrolled environments that do not utilize any facial landmarks. To the best of our knowledge this paper is the first to experiment detecting glasses from selfie photos, using a robust deep learning approach. Experimental results on various benchmark facial analysis datasets demonstrated the superior performance of the proposed technique with 96% accuracy

    Modeling, polynomial regression, and artificial bee colony optimization of SI engine performance improvement powered by acetoneā€“gasoline fuel blends

    No full text
    The current study attempts to improve the performance of SI engines by employing two alternative acetoneā€“gasoline mixtures. This investigation applies the Artificial Bees Colony Algorithm (ABC) to determine the optimum acetoneā€“gasoline blends and engine speed to increase engine performance further and minimize fuel consumption. The SI engine performance of one-cylinder, four-stroke powered by neat gasoline fuel (AC0), 5% of acetone by volume (AC5), and 10 % of acetone by volume (AC10) has been investigated experimentally. TestsĀ were carried out at speed ratesĀ from 1,000 to 3,600 rpm. The gasoline engine was integrated into an eddy-current dynamometer to evaluate the performance indexes. It was revealed that the overall performance of the gasoline engine is enhanced when acetone is blended with gasoline. The AC10 exhibited better engine brake torque (BT) and brake thermal efficiency (BTE) than pure gasoline, with 4.39 % and 6.9 %, respectively. According to the optimization findings, a 10% acetone concentration and engine speeds of 2889 rpm and 2769 rpm produced the best results in terms of BT and BTE, which were 7.776 N.m and 29.992%, respectively. However, at 2401 rpm of engine speed, a minimum BSFC of 0.2986 was reached without acetone. This result demonstrates that the ABC algorithm can precisely forecast the optimal position in terms of engine effectiveness and fuel consumption

    Applied Intelligent Grey Wolf Optimizer (IGWO) to Improve the Performance of CI Engine Running on Emulsion Diesel Fuel Blends

    No full text
    Water-in-diesel (W/D) emulsion fuel is a potential alternative fuel that can simultaneously lower NOx exhaust emissions and improves combustion efficiency. Additionally, there are no additional costs or engine modifications required when using W/D emulsion fuel. The proportion of water added and engine speed is crucial factors influencing engine behavior. This study aims to examine the impact of the W/D emulsion diesel fuel on engine performance and NOx pollutant emissions using a compression ignition (CI) engine. The emulsion fuel had water content ranging from 0 to 30% with a 5% increment, and 2% surfactant was employed. The tests were performed at speeds ranging from 1000 to 3000 rpm. All W/D emulsion fuel was compared to a standard of pure diesel in all tests. A four-cylinder, four-stroke, water-cooled, direct-injection diesel engine test bed was used for the experiments. The performance and exhaust emissions of the diesel engine were measured at full load and various engine speeds using a dynamometer and an exhaust gas analyzer, respectively. The second purpose of this study is to illustrate the application of two optimizers, grey wolf optimizer (GWO) and intelligent grey wolf optimizer (IGOW), along with using multivariate polynomial regression (MPR) to identify the optimum (W/D) emulsion blend percentage and engine speed to enhance the performance, reduce fuel consumption, and reduce NOX exhaust emissions of a diesel engine operating. The engine speed and proportion of water in the fuel mixture were the independent variables (inputs), while brake power (BP), brake thermal efficiency (BTE), brake-specific fuel consumption (BSFC), and NOx were the dependent variables (outcomes). It was experimentally observed that utilizing emulsified gasoline generally enhances engine performance and decreases emissions in general. Experimentally, at 5% water content and 2000 rpm, the BSFC has a minimal value of 0.258 kJ/kW·h. Under the same conditions, the maximum BP of 11.6 kW and BTE of 32.8% were achieved. According to the IGWO process findings, adding 9% water to diesel fuel and running the engine at a speed of 1998 rpm produced the highest BP (11.2 kW) and BTE (33.3%) and the lowest BSFC (0.259 kg/kW·h) and reduced NOx by 14.3% compared with the CI engine powered by pure diesel. The accuracy of the model is high, as indicated by a correlation coefficient R2 exceeding 0.97 and a mean absolute error (MAE) less than 0.04. In terms of the optimizer, the IGWO performs better than GWO in determining the optimal water addition and engine speed. This is attributed to the IGWO has excellent exploratory capability in the early stages of searching

    Modeling and Optimization of a Compression Ignition Engine Fueled with Biodiesel Blends for Performance Improvement

    No full text
    Biodiesel is considered to be a promising alternative option to diesel fuel. The main contribution of the current work is to improve compression ignition engine performance, fueled by several biodiesel blends. Three metrics were used to evaluate the output performance of the compression ignition engine, as follows: brake torque (BT), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE), by varying two input parameters (engine speed and fuel type). The engine speeds were in the 1200–2400 rpm range. Three biodiesel blends, containing 20 vol.% of vegetable oil and 80 vol.% of pure diesel fuel, were prepared and tested. In all the experiments, pure diesel fuel was employed as a reference for all biodiesel blends. The experimental results revealed the following findings: although all types of biodiesel blends have low calorific value and slightly high viscosity, as compared to pure diesel fuel, there was an improvement in both BT and brake power (BP) outputs. An increase in BSFC by 7.4%, 4.9%, and 2.5% was obtained for palm, sunflower, and corn biodiesel blends, respectively, as compared to that of pure diesel. The BTE of the palm oil biodiesel blend was the lowest among other biodiesel blends. The suggested work strategy includes two stages (modeling and parameter optimization). In the first stage, a robust fuzzy model is created, depending on the experimental results, to simulate the output performance of the compression ignition engine. The particle swarm optimization (PSO) algorithm is used in the second stage to determine the optimal operating parameters. To confirm the distinction of the proposed strategy, the obtained outcomes were compared to those attained by response surface methodology (RSM). The coefficient of determination (R2) and the root-mean-square-error (RMSE) were used as comparison metrics. The average R2 was increased by 27.7% and 29.3% for training and testing, respectively, based on the fuzzy model. Using the proposed strategy in this work (integration between fuzzy logic and PSO) may increase the overall performance of the compression ignition engine by 2.065% and 8.256%, as concluded from the experimental tests and RSM

    Modeling and Optimization of a Compression Ignition Engine Fueled with Biodiesel Blends for Performance Improvement

    No full text
    Biodiesel is considered to be a promising alternative option to diesel fuel. The main contribution of the current work is to improve compression ignition engine performance, fueled by several biodiesel blends. Three metrics were used to evaluate the output performance of the compression ignition engine, as follows: brake torque (BT), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE), by varying two input parameters (engine speed and fuel type). The engine speeds were in the 1200ā€“2400 rpm range. Three biodiesel blends, containing 20 vol.% of vegetable oil and 80 vol.% of pure diesel fuel, were prepared and tested. In all the experiments, pure diesel fuel was employed as a reference for all biodiesel blends. The experimental results revealed the following findings: although all types of biodiesel blends have low calorific value and slightly high viscosity, as compared to pure diesel fuel, there was an improvement in both BT and brake power (BP) outputs. An increase in BSFC by 7.4%, 4.9%, and 2.5% was obtained for palm, sunflower, and corn biodiesel blends, respectively, as compared to that of pure diesel. The BTE of the palm oil biodiesel blend was the lowest among other biodiesel blends. The suggested work strategy includes two stages (modeling and parameter optimization). In the first stage, a robust fuzzy model is created, depending on the experimental results, to simulate the output performance of the compression ignition engine. The particle swarm optimization (PSO) algorithm is used in the second stage to determine the optimal operating parameters. To confirm the distinction of the proposed strategy, the obtained outcomes were compared to those attained by response surface methodology (RSM). The coefficient of determination (R2) and the root-mean-square-error (RMSE) were used as comparison metrics. The average R2 was increased by 27.7% and 29.3% for training and testing, respectively, based on the fuzzy model. Using the proposed strategy in this work (integration between fuzzy logic and PSO) may increase the overall performance of the compression ignition engine by 2.065% and 8.256%, as concluded from the experimental tests and RSM
    corecore